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Two Fortran 77 routines for the evaluation of Scorer functions of complex arguments Gi(z), Hi(z),
and their derivatives are presented. The routines are based on the use of quadrature, Maclaurin
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1. INTRODUCTION

This algorithm computes the Scorer functions Gi(z) and Hi(z) in the complex
plane. Scorer functions are solutions of the inhomogeneous Airy differential
equations
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with initial values

. 1 . 1_. 1 1

Gi(0) = -Hi(0)= =Bi(0)= —=Ai(0)= — 0

2 3 V3 376r(2/3)’
1 1 1 1 @

Gi'(0) = -Hi'(0) = =Bi(0) = ———=Ai'(0) = ——

2 3 V3 3%8r(1/3)
' Because Scorer functions and Airy functions solve the inhomogeneous equa-
tion w” — zw = K, with K constant, Scorer functions appear in asymp-

totic expansions for inhomogeneous equations around a turning point [Olver
1997, P. 429]. Scorer functions appear in a number of applications in physics
and chemistry (see, e.g., Lee [1980], MacLeod [1994], and Sakharov and
Tereschenko [1996] for real variables and Romalis and Happer [1999] for com-
plex variables).

Properties of the Scorer functions are given in Chapter 10 of Abramowitz
and Stegun [1964]. In Gil et al. [2001] stable integral representations of the
Scorer functions have been derived, with a discussion of methods for numerical
quadrature. Relevant properties and conclusions from our earlier paper are
given in the next section.

For the evaluation of real argument Scorer functions, 20D coefficients of
Chebyshev expansions for Gi and Hi are given in MacLeod [1994]. For complex
argument no published algorithms seem to be available. We provide an algo-
rithm, based on Maclaurin series for small |z|, quadrature for intermediate
values, and asymptotic expansions for large |z|. In the algorithm we also use
values of the Airy function Ai(z) and Bi(z), which are computed by algorithms
given in Gil et al. [2002b].

The program gives the option of computing scaled Scorer functions in order
to enlarge the range of computation in the sectors of the complex plane where
the functions become exponentially large for large |z|.

The relative accuracy for the modulus of the functions is better than 10712,
except, of course, near their zeros, where the accuracy must be interpreted as
absolute accuracy. Regarding the computation of the phase of the functions,
10712 is the absolute accuracy. See Gil et al. [2002b] for further comments on
the accuracy claims when computing functions in the complex plane in finite
precision arithmetic.

The accuracy of the codes is limited by the accuracy in the computation of
the Airy functions Ai(z) and Bi(z) in the sectors of the complex plane where
connection formulas (4), (6), and (5) are used. Given that the codes in Gil et al.
[2002b] provide an accuracy better than 10713, a conservative claim for Scorer
functions is that the accuracy is better than 10712 (the accuracy for Hi(z) is
better in the sector where connection formulas are not used). Similarly to that
described in Gil et al. [2002b], the accuracy in the computation of the unscaled
Scorer functions Hi(z) and Gi(z) will gradually worsen as larger |z| values (|z| >
30) are considered, particularly when relations involving Airy functions are
required (Equations (4) to (6)) and Airy functions are dominant for large z.
This degradation in accuracy is eliminated by scaling the functions in these
sectors (see Section 2.2). Similarly as for Airy functions, there is a case for
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which not even scaling avoids the accuracy degradation: relative accuracy in
the computation of Gi(z) on the negative real axis is gradually lost as larger
|z| is considered, and this degradation is similar to that described in Gil et al.
[2002b] (because Gi(—x) ~ Bi(—x) for large x).

2. METHOD OF COMPUTATION

We briefly summarize the results of Gil et al. [2001] and indicate the numerical
methods for different regions in the complex plane.

Several symmetry rules and connection formulas are available for computing
the Scorer functions. Some relations produce large numerical errors, because
of cancellation, and these relations should be avoided. As explained in Gil et al.
[2001], the direct evaluation of the function Hi(z) is needed in a certain sector in
the complex plane; in the rest of the complex plane, stable connection formulas
are available. Conjugation is used throughout.

We have the following stable schemes.

Scheme for Hi(z).
—Ifphz e [%n, 7] then use quadrature of the representation
Hi(z) = / " g1 gy 3)
T Jo
—Ifphz € [0, %n[ then use the connection formula
Hi(z) = e*™"/?Hi(ze*™/%) 4 2¢"/6 Ai(ze~27!/3), 4)
Scheme for Gi(z)).
—Ifphz e [%n, 7] then use the connection formula
Gi(z) = Bi(z) — Hi(z). (5)
—Ifphz € [0, %n’[ then use the connection formula
Gi(z) = —e®™/3Hi(2e?"/%) + i Ai(2). (6)

These schemes are slightly different from the ones in Gil et al. [2001]. The
connection formula (6) is not given in Gil et al. [2001], but follows from com-
bining (2.7) and (2.8); see also (3.17). The quadrature rule is used in the sector
where Hi(z) is of order O(1/z) for large z; see (13). In other sectors the Scorer
functions may become exponentially large at infinity, and these cases are gov-
erned by the connection formulas with the Airy functions.

The method of computation of the derivatives, Gi'(z) and Hi'(z), consists of
taking the derivative of Equations (8) to (5). For instance, taking the derivative
with respect to z in Equation (3) we have:

. 1 g 3
Hi'(z) = ;/0 te® =3 gy (7

which can be computed considering the same method we next describe for the
computation of Hi(z).
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Ip Gil et al.'[2001], it was discussed how to compute the integral for Hi in
(3) in a numerically stable way by properly deforming the integration path in

order to avoid oscillations of the integrand. We write
. . 1
z=x+1iy, t=u+iv, ¢t)= §t3 —zt = ¢;(u,v) + igi(u, v),
where

3 2

1
or(u,v) = g’ —uv” —xu + yu, ¢i(u, v) = u?v — %03 — XU —yu.

Thep we integrate along the contour defined by ¢;(«, v) = 0, which starts at the
origin and runs into a valley of the integrand. We obtain

. 1 />
Hi(z) = —/ e o @p)du, (8)
T Jo

where v(u) is the solution of ¢;(x, v) = 0, and

d _
v(u)=1+i 2uv — y

hw)=1+i —
() te du vZ—uZ242x’

In this way the integral becomes nonoscillating. Near the upper boundary of the
sector phz € [%n, 7]; that is, near the half-line y = —x+/3,x < 0, the relation
between v and u becomes singular. In this case, it is better to use a different
relation. We use a simple relation that fits the exact solution of ¢;(u,v) = 0 at
v =0 and at u = oo by writing

y u du(u) oy 1 —u?
xul+1 du = x @24+1)2
This gives

Hi(z) — %/ e-¢,(u,v(u))—i¢i(u,v(u))h(u)du’ (9)
0

where again h(u) = 1 + idv(u)/du with the new expression for the derivative.
Representation (9) has oscillations in the integrand, but these do not cause any
difficulties in the quadrature. It is important that v(u) fits the exact solution
at u = 0 in order to reduce the number of oscillations for small u, where the
main contributions to the integral come from; of course, choosing the same
behavior at u = oo is also crucial to ensure that the oscillations at large » do
not contribute significantly to the computation of the integral. In this way, the
oscillations for small u are eliminated or reduced and the contributions for large
u are negligible.

The integrals in (8) and (9) are of the form f0°° f(u)du, where [ is analytic
in a neighborhood of [0, o). For large u we have f(u) = O(exp —%u3)); hence f
is decreasing very fast at co.

By writing u = In(1 + ¢°) the integral is transformed into
e‘ds

/0 f(u)du=/ [ (n1+e9) 7

o0
—00
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and to improve convergence at —oo a further substitution s = sinh ¢ is used. The
trapezoidal rule is very efficient on this type of integrals of analytic functions;
see Gil et al. [2002a].

2.1 Series Expansions

The quadrature method works for all complex z in the indicated sectors. For
efficiency reasons, power series and asymptotic expansions are used when
possible.

The functions Gi and Hi are entire functions. The power series for Hi follows
easily from (3), and reads

o k 0o
Hi(z) = 1 thf_" By =/ tho=(UBX gy _ gU1/3Kk-2) (fﬁil_) .10
T =0 k! 0 3

For Gi such a simple derivation is not available. However, by using (see (2.8) of
Gil et al. [2001])

Giz) = —% (€23 Hi(ze¥"1/3) e =27 i/3Hi(ze~27i/3)], (11)
it follows that
. 1 z*k 2
Giz) == gr>  &r=—hrcosZmlk +1). (12)
i k! 3

The power series are used for |z| < 1.5. For large z we have the asymptotic
expansion:

(3s +2)! 2
Hi(z) = [ pc Z s'(3z3)s} , 200, |ph(-2)|< gn -3, (13)

4 being an arbitrary positive constant. We use this expansion for |z| > 20, and
to avoid the boundary of the sector of validity we take phz € [%n, 7). This

corresponds to the first item in Scheme 1. An asymptotic expansion for Gi is
also available:

1 (8s +2)! T
Gi(z) ~ —— [l + — g zzz S1353 ] z — 00, |ph(z)| < 3~ 8. (14)
We use this expansion for |z| > 30, |phz| < 7/3 — 0.3.

2.2 Scaling the Functions

The scaling of the functions is relevant for Hi(z) in the sector phz € [— n, 3 iq1,
where the function increases exponentially for large |z|. The dommant factor

in the asymptotic behavior is exp(;) with ¢ = £23/2. In this case, we define the
scaled function (see Equation (4)) by

Hi(z) = e~ 232" Hi(z) = 27/3~2/32% [j(50271/3) 4 2e‘ni/6E(ze—2ni/3)’ (15)

where Ai is the scaled Airy function, which is computed by the code AIZ [Gil
et al. 2002b]. In the remaining part of the plane Hi(z) is of order O(1/2); see (13).
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For Gi(z) the scaling is relevant when ph(~z) € [x, 2]. Connection for-

gulas (6) and (5) give the possibility of rescaling Gi; defining Gi= exp(¢)Gi we
ave:

Gilz) = —e2mi/3¢2/3=" * Hi(ze27i/3) 1 {Ai(z) for 7/3 < Iphz| < 27/3,
. N (16)
Gi(z) = —e®?/32"*Hi(z) + Bi(z) for 27/3 < |phz| < 7,

VZVéIOe:zrs] Bi(z) is the scaled function computed by the code BIZ [Gil et al.

3. DESCRIPTION OF THE ROUTINES

We now describe the inputs and outputs of the main routines for the computa-
tion of Hi(z) and Gi(z) (GIZ and HIZ, respectively).

The routine GIZ depends on HIZ, and both HIZ and GIZ call the external
codes AIZ and BIZ for the computation of the complex Airy functions Ai(z) and
Bi(z) [Gil et al. 2002b].

Both GIZ and HIZ call the function DIMACH to obtain the machine de-
pendent constants (overflow and underflow numbers and the smallest relative
spacing). This routine is included in the package; also, it can be retrieved from
the Netlib repository (http://www.netlib.org/blas/d1mach.f).

SUBROUTINE HIZ(IFACH,X,Y,REH,IMH,REHPIMHP,JERROH)

INPUT:
IFACH:
IFACH=1, the code computes Hi(z) and Hi'(z).
IFACH=2, the code computes scaled Scorer functions in the sector ph(z) €
[-n/8, 7w /3] and unscaled Scorer functions in the rest of the complex plane.
X: real part of the argument Z.
Y: imaginary part of the argument Z.
OUTPUT:
REH: real part of the Scorer function Hi(z).
IMH: imaginary part of the Scorer function Hi(z).
REHP: real part of the derivative of the Scorer function Hi'(z).
IMHP: imaginary part of the derivative of the Scorer function Hi'(z).
IERROH: error flag for overflow/underflow problems in the evaluation of unscaled
Scorer functions Hi(z), Hi'(z). f IERROH=1, the computation was successful. If
IERROH=2, the Scorer functions underflow or overflow.

The routine HIZ depends on the following subroutines (included in the code).

(1) HIZINT: implements the trapezoidal rule for Hi(z) and Hi'(2).
(2) HIZSER: computes the power series for Hi(z) and Hi'(z).

(3) HIZEXP: computes the asymptotic expansion for Hi(z) and Hi'(z), which is
applied in the sector 27/3 < phz < 7.

(4) Auxiliary routines:
INTT (called by HIZINT), INTU (called by INTT).
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SUBROUTINE GIZ(IFACG,X,Y,REG,IMGREGPIMGP,IERROG)

INPUT:
IFACG:

IFACG=1, the code computes Gi(z) and Gi'(2).

IFACG=2, the code computes scaled Scorer functions in the sector 7/3 <
ph(z) < 7 (and the complex conjugated sector) and unscaled Scorer func-
tions in the rest of the complex plane.

X: real part of the argument Z.

Y: imaginary part of the argument Z.

OUTPUT:

REG: real part of the Scorer function Gi(z).

IMG: imaginary part of the Scorer function Gi(z).

REGP: real part of the derivative of the Scorer function Gi'(z).

IMGP: imaginary part of the derivative of the Scorer function Gi'(z).

IERROG: error flag for overflow/underflow problems in the evaluation of unscaled
Scorer functions Gi(z), Gi'(z). If IERROG = 1, the computation was successful.
IfIERROG =2, the Scorer functions underflow or overflow.

The routine GIZ depends on the following subroutine (included in the code).

GIZSER: computes the power series for Gi(z) and Gi'(z).

4. COMPUTATIONAL ASPECTS

In order to determine the region of applicability of power series (Equations (10)
and (12)) and asymptotic expansions (Equations (13) and (14)), we have com-
pared these methods with integral representations. In Figure 1 we show the
comparison for series (Figure 1(a)) and asymptotic expansions (Figure 1(b)).
The points of discrepancy for an accuracy better than 10~12 for Hi(z) are plot-
ted. As commented on in Section 2.1, the asymptotic expansion for Hi(z) is used
in the sector ph(—z) < 7/3 whereas for ph(z) < 27/3 we combine Equations (4)
and (13).

From the figures we conclude that, for Hi(z), a safe choice is the use of
series for |z| < 1.5 and asymptotic expansions for |z| > 20. In the rest of
the complex plane, integral representations and/or connection formulae are
used. For Gi(z) similar arguments are considered and series are used for
|z] < 1.5 whereas the asymptotic expansion is used for |z| > 30 and |phz| < 7/
3-0.3.

4.1 Numerical Verification

We are using several connection formulas in the routines, and other ones are
available for checking the codes. However, these remaining formulas are trivial
consequences of the ones used in the codes. Also, we could consider Wronskian
relations such as, for instance [Abramowitz and Stegun 1964],

Gi(z)Hi'(z) — Gi'(z)Hi(z) = —i— / ) Bi(¢)dt,
0
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Fig. 1. (a) Points of discrepancy for an accuracy better than 1012 between series and integral

representations for Hi(z); (b) Same for the discrepancy between asymptotic expansions and integral
representations.

however, this relation is not suitable for checking because of the integral of
Bi(z).

An alternative way for testing is based on local Taylor series [Cody and Stolz
1991]

g

|

k
; Hi%®(2), an

Hiz +w) =
k=0

B

where the derivatives can be obtained from the recursion
Hi**¥(z) = zHi*"V(2) + (& + DHi®(2) % >0, (18)

which easily follows from (3). Initial values Hi(z) and Hi'(z) are computed by our
code; the value of Hi®(z) follows from the differential equation in (1) (Hi'®(z) =
zHi(z) + (1/7)). The recursion (17) also holds for derivatives of Gi(z).

For the scaled functions, the addition formula reads:

0 ) J—
ﬁ,i(z +w)= ec[l—(1+w/z)3/2] Z —w—-Hi(k)(z) (19)
o k! ’

where { = 2z3/2 and Hi?(z) is given now by Hi®(z) = 2Hi(z)+ (=% /m); Hi% (2)
denote scaled derivatives; that is: Hi*(2) = e ¢Hi*(2).

As we next describe, this test indicates that the accuracy of the algorithms
is better than 10~12. The error should be interpreted as in Gil et al. [2002b] in
the sense that only absolute accuracy makes sense when a function is close to
a zero.

Of course, first one has to check the numerical feasibility of the accuracy
test based on local Taylor series. The recurrences for the computation of the
derivatives are seen to become unstable for forward computation in certain
sectors of the complex plane and especially for large |z|; in particular, the
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Fig.2. Points where the relative deviations for the computation of the phase of Hi(z+w) (a) through
(17) and Hi(z + w) (b) through (19) are greater than 10-12 compared with direct computation;
(b) also plots the line ph(z + w) = n/3, which is the limit of validity of the scaling for Hi(z + w).

recurrences cannot be used to compute high derivatives of Hi(z) when the
function is algebraically decaying as |z| — oo (in |ph(—z)| < 27/3) and the
same is true for Gi(z) in |ph(z)| < 7/3. This means that w should be chosen
small enough to ensure that the number of derivatives to be calculated is small
enough. We have checked that w = 0.1 is a reasonable selection: it is not too
small (of course w = 0 is not a check at all), and not too large (not many
derivatives are required). The number of terms needed in the Taylor series
is numerically obtained by stopping the sum when the last term is negligible
with respect to the accumulated sum (we force the relative contribution to be
smaller than the smallest relative spacing of the machine). Precisely in the sec-
tors where the recurrence is more unstable for large z, fewer terms of the Taylor
series are needed; this is as expected given that the successive derivatives be-
come smaller and smaller, as can be understood from their asymptotic behavior
(Equations (13) and (14)). With this, the test turns out to be feasible for check-
ing the algorithms to 1072 accuracy. Indeed, we have applied Equation (17),
using the recurrences with starting values Hi(z) and Hi'(z) obtained from
our code and repeated the same computation with randomly perturbed initial
values, with relative perturbations smaller than our accuracy claim (10712).
We have checked that both computations are consistent among them within
an accuracy of 10712, The same analysis has been carried out for the Gi(z)
function. ~

In Figure 2 we check the errors in the evaluation of Hi(z + w) and Hi(z + w)
comparing the direct computation by the code HIZ and the use of Equations (17)
and (19) for an accuracy of 10712, As previously noted, we take w = 0.1 (other
selections of w give similar results provided |w| is small enough).

The points of discrepancy shown in Figure 2(a) correspond to the level curves
where the real or imaginary parts of Hi(z) vanish. The curves corresponding
to SHi = 0 and %®Hi = O intersect at the complex zeros of Hi(z) which lie
above the ray phz = 7/3 [Gil et al. 2002¢c]. The check for the modulus shows
no discrepancies for a relative accuracy of 1012, except close to the zeros of the
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Fig. 3. Points where the relative error in the computation of the phase of Gi(z + w), comparing
Taylor series around w = 0 with the direct computation by the code GIZ, is greater than 10712 (a).
Similarly, the corresponding discrepancies found in the evaluation of the phase of Gi(z + w) within
a relative accuracy of 102 are shown (b).

function where only the absolute error makes sense. The vertical line reflects
the fact that Hi(z) becomes purely imaginary as z — {0 (Equation (13)).

Figure 2(b) corresponds to the same test for the scaled function Hi(gl (jphz| <

7/3). The arc appearing in the figure corresponds to a level curve iWHi = 0. No
zeros of the function appear in this sector.
__In Figure 3 we compute the deviations in the evaluation of Gi(z + w) and
Gi(z + w) comparing their direct computation with the corresponding Taylor
series (17) for Gi(z +w) and (19) for Gi(z +w). Points where the relative deviation
is greater than 1012 are plotted.

Figure 3(a) shows similar characteristics as Figure 2(a). The complex zeros of
Gi(z) lie below the ray phz = 7/3. In addition, Gi(z) has infinitely many negative
real zeros. The same test for the modulus shows complete agreement within
10~12 accuracy except very close to the zeros of the function where only absolute
error makes sense. Figure 3(b) shows the same check for scaled Scorer function
Gi(z) focusing in a region near the negative real axis, where the zeros of Gi(z)
(which are the real negative zeros of Gi(z)) lie. The curves of discrepancy are
the level curves RGi = 0 and 3Gi = 0, which touch at the zeros of the function.
No other errors are observed for the scaled function in its sector of definition.

For the derivatives of Hi(z) and Gi(z) the results are similar, with the only
addition of asymptotical level curves corresponding to zero real or imaginary
parts. The function Hi'(z) becomes purely real on the ray phz = n/2 and
purely imaginary on the ray phz = 37/4 as |z| — oo, while, asymptotically,
Gi’(z) becomes purely imaginary on the ray phz = /4. See Figure 4.

All the discrepancies shown in the figures are natural and unavoidable in
finite precision arithmetic. Therefore, our code is consistent with 102 accuracy,
in the sense described in Gil et al. [2002b].

A further check is provided by the computation of the zeros of Scorer func-
tions. In Gil et al. [2002c¢], asymptotic expansions for the real and complex zeros
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Fig. 4. Points where the relative deviations in the computation of the phase of Hi'(z + w) (a) and
Gi'(z + w) (b) are greater than 10~12 (comparing Taylor series around w = 0 with direct computa-
tion). The rays ph(z + w) = 37/4 (a) and ph(z + w) = r/4 (b) are also shown (dashed lines).
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Fig. 5. —logyg(error) for the comparison of the numerical values obtained by our code for Hi(z)
(a) (interval [-100 : 0]) and Gi(z) (b) (interval [0 : 100]) with MacLeod’s code.

of Scorer functions were derived. Using estimated values from the asymptotic
expansions, the Newton—Raphson method, using the values of the functions
and the derivatives provided by our algorithms, converged to the zeros with at
least 10~'2 accuracy.

4.2 Comparison with MacLeod’s Code: Real z

As mentioned before, in MacLeod [1994] 20D coefficients of Chebyshev expan-
sions for Gi (positive real z) and Hi (negative real z) are given. For the rest of
the real axis connection formulas with Airy functions are used. We tested our
code against these Chebyshev expansions.

In Figure 5(a) we plot —log;y(€), with € the relative error when compar-
ing the numerical values obtained by our code for Hi(z) with MacLeod’s code.
Figure 5(b) is analogous to Figure 5(a) but for Gi(z).

Figure 5 shows that our code is consistent with an accuracy better than 1012
on the real axis. The two different regions that are apparent in the figures
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correspond to two different methods of computation: quadrature rules for mod-

erate |z| and asymptotic expansions for larger |z|. The use of series for |z| < 1.5
is not noticeable as a different pattern.

4.3 CPU Times

The most demanding process in the algorithm is the computation of the inte-
gral representation. Consequently, the slowest computations are for moderate
values of z (1.5 < |z| < 20). For example, in a Pentium II 350 MHz PC (running
g77 under Debian Linux 2.1), the typical CPU times for the evaluation of one
value of Hi(z) in the principal sector (27 /3 < |phz| < ), are: 20 us when series
or asymptotic expansions are used and 450us when integral representations
are considered.
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